Юридические советы

Средняя квадратическая погрешность в геодезии

Содержание:

1. Классификация ошибок измерений

_______ Измерения в геодезии рассматриваются с двух точек зрения: количественной, выражающей числовое значение измеренной величины, и качественной, характеризующей ее точность. Из практики известно, что даже при самой тщательной и аккуратной работе многократные (повторные) измерения не дают одинаковых результатов. Это указывает на то, что получаемые результаты не являются точным значением измеряемой величины, а несколько отклоняются от него. Значение отклонения характеризует точность измерений.

_______ При геодезических измерениях неизбежны ошибки. Эти ошибки бывают грубые , систематические и случайные .

_______ К грубым ошибкам относятся просчеты в измерениях по причине невнимательности наблюдателя или неисправности прибора, и они полностью должны быть исключены. Это достигается путем повторного измерения.

_______ Систематические ошибки происходят от известного источника, имеют определенный знак и величину и их можно учесть при измерениях и вычислениях.

_______ Случайные ошибки обусловлены разными причинами и полностью исключить их из измерений нельзя. Поэтому возникают две задачи: как из результатов измерений получить наиболее точную величину и как оценить точность полученных результатов измерений. Эти задачи решаются с помощью теории ошибок измерений _______

_______ В основу теории ошибок положены следующие свойства случайных ошибок :
_______ 1. Малые ошибки встречаются чаще, а большие реже.
_______ 2. Ошибки не превышают известного предела.
_______ 3. Положительные и отрицательные ошибки, одинаковые по абсолютной величине, одинаково часто встречаются.
_______ 4. Сумма ошибок, деленная на число измерений, стремится к нулю при большом числе измерений.

_______ По источнику происхождения различают ошибки приборов, внешние и личные. Ошибки приборов обусловлены их несовершенством, например погрешность угла, измеренного теодолитом, неточным приведением в вертикальное положение оси его вращения.

_______ Внешние ошибки происходят из-за влияния внешней среды, в которой протекают измерения, например погрешность в отсчете по нивелирной рейке из-за изменения температуры воздуха на пути светового луча (рефракция) или нагрева нивелира солнечными лучами.

_______ Личные ошибки связаны с особенностями наблюдателя, например, разные наблюдатели по-разному наводят зрительную трубу на визирную цель. Так как грубые погрешности должны быть исключены из результатов измерений, а систематические исключены или ослаблены до минимально допустимого предела, то проектирование измерений с необходимой точностью и оценку результатов выполненных измерений производят, основываясь на свойствах случайных погрешностей.

2. Арифметическая середина

_______ Если одна величина измерена n раз и получены результаты: l 1, l 2, l 3, l 4, l 5, l 6,…. l n , то

_______ Величина x называется арифметической серединой или вероятнейшим значением измеренной величины. Разности между каждым измерением и арифметической срединой называют вероятнейшими ошибками измерений:

_______ Или в общем виде получим:

3. Средняя квадратическая ошибка

_______ Точность результатов измерений оценивается средней квадратической ошибкой. Средняя квадратическая ошибка одного измерения вычисляется по формуле:

где [v 2 ] – сумма квадратов вероятнейших ошибок; n – число измерений. Средняя квадратическая ошибка арифметической середины вычисляется по формуле:

_______ Предельная ошибка не должна превышать утроенной средней квадратической ошибки, т.е. ε = 3 x m.

_______ Иногда о точности измерений судят не по абсолютной величине средней квадратической или предельной погрешности, а по величине относительной ошибки. ___

_______ Относительной ошибкой называется отношение абсолютной ошибки к значению самой измеренной величины. Относительную ошибку выражают в виде простой дроби, числитель которой — единица, а знаменатель — число, округленное до двух-трех значащих цифр с нулями. Например, относительная средняя квадратическая погрешность измерения линии длиной:

_______ l = 110 м, при m = 2 см, равна m/ l = 1/5500.

_______ Линия измерена шесть раз. Определить ее вероятнейшую длину и оценить точность этого результата. Вычисления приведены в таблице:

Таб. 1

_______ По формулам вычислены абсолютные средние квадратические ошибки, а оценивать точность измерения длины линии необходимо по относительной ошибке. Поэтому нужно абсолютную ошибку разделить на длину линии. Для нашего примера относительная ошибка вероятнейшего значения измеренной линии равна

4. Оценка точности измерений

_______ Точность результатов многократных измерений одной и той же величины оценивают в такой последовательности:

_______ 1. Находят вероятнейшее (наиболее точное для данных условий) значение измеренной величины по формуле арифметической середины х = [ l ]/n.
_______ 2. Вычисляют отклонения для каждого значения измеренной величины от значения арифметической средины. Контроль вычислений: [v] = 0;
_______ 3. По формуле вычисляют среднюю квадратическую ошибку одного измерения.
_______ 4. По формуле вычисляют среднюю квадратическую ошибку арифметической средины.
_______ 5. Если измеряют линейную величину, то подсчитывают относительную среднюю квадратическую ошибку каждого измерения и арифметической средины.

_______ 6. При необходимости подсчитывают предельную ошибку одного измерения, которая может служить допустимым значением погрешностей аналогичных измерений.

5. Понятие о неравноточных измерениях

_______ Неравноточными измерениями называются такие, которые выполнены различным числом приемов, приборами различной точности и т.д. Если измерения неодинаковой точности, то для определения общей арифметической середины пользуются формулой:

Читайте также:  Сотрудник проводящий служебную проверку

________ Весом называется число, которое выражает степень доверия к результату измерения. В тех случаях, когда неизвестны веса измеренных величин, а известны их средние квадратические ошибки, то веса можно вычислить по формуле:

т.е. вес результата измерений обратно пропорционален квадрату средней квадратической ошибки.

_______ При неравноточных измерениях средняя квадратическая ошибка измерения, вес которого равен единице, определяется по формуле:

где δ – разность между отдельными результатами измерений и общей арифметической серединой.

Любые измерения, как бы тщательно их ни выполняли, сопровождаются погрешностями (ошибками), т. е. отклонениями измеренных величин от их истинного значения. Это объясняется тем, что в процессе измерений непрерывно меняются условия: состояние внешней среды, мерного прибора и измеряемого объекта, а также внимание исполнителя. Поэтому при измерении величины всегда получают ее приближенное значение, точность которого требуется оценить. Возникает и другая задача: выбрать прибор, условия и методику, чтобы выполнить измерения с заданной точностью. Эти задачи помогает решить теория ошибок, которая изучает законы распределения погрешностей, устанавливает критерии оценки и допуски к точности измерений, способы определения вероятнейшего значения определяемой величины, правила предвычисления ожидаемых точностей.

12.1. ИЗМЕРЕНИЯ И ИХ КЛАССИФИКАЦИЯ

Измерением называют процесс сравнения измеряемой величины с другой, принятой за единицу измерения известной величиной.
Все величины, с которыми мы имеем дело, подразделяют на измеренные и вычисленные. Измеренной величиной называют ее приближенное значение, найденное путем сравнения с однородной единицей меры. Так, последовательно укладывая землемерную ленту по заданному направлению и подсчитывая число уложений, находят приближенное значение длины участка.
Вычисленной величиной называют ее значение, определенное по другим измеренным величинам, функционально с ней связанным. Например, площадь участка прямоугольной формы есть произведение его измеренных длины и ширины.
Для обнаружения промахов (грубых ошибок) и повышения точности результатов одну и ту же величину измеряют несколько раз. По точности такие измерения подразделяют на равноточные и неравноточные. Равноточные – однородные многократные результаты измерения одной и той же величины, выполненные одним и тем же прибором (или разными приборами одного и того же класса точности), одинаковыми способом и числом приемов, в идентичных условиях. Неравноточные – измерения, выполненные при несоблюдении условий равноточности.
При математической обработке результатов измерений большое значение имеет число измеренных величин. Например, чтобы получить величину каждого угла треугольника, достаточно измерить лишь два из них – это и будет необходимое число величин. В общем случае для решения любой топографо-геодезической задачи необходимо измерить некоторое минимальное число величин, обеспечивающее решение поставленной задачи. Их называют числом необходимых величинили измерений. Но чтобы судить о качестве измерений, проконтролировать их правильность и повысить точность результата, измеряют и третий угол треугольника – избыточный. Числом избыточных величин (k) называют разность между числом всех измеренных величин (п) и числом необходимых величин (t):

В топографо-геодезической практике избыточные измеренные величины обязательны. Они позволяют обнаруживать ошибки (погрешности) в измерениях и вычислениях и повышают точность определяемых величин.

По физическому исполнению измерения могут быть прямые, косвенные и дистанционные.
Прямые измерения являются простейшими и в историческом плане первыми видами измерений, например, измерение длин линий землемерной лентой или рулеткой.
Косвенные измерения основываются на использовании некоторых математических зависимостей между искомыми и непосредственно измеряемыми величинами. Например, площадь прямоугольника на местности определяют, измерив длины его сторон.
Дистанционные измерения основываются на использовании ряда физических процессов и явлений и, как правило, связаны с использованием современных технических средств: светодальномеров, электронных тахеометров, фототеодолитов и т.д.

Измерительные приборы, используемые в топографо-геодезическом производстве, можно разделить на три основных класса:

  • высокоточные (прецизионные);
  • точные;
  • технические.

12.2. ПОГРЕШНОСТИ ИЗМЕРЕНИЙ

При многократном измерении одной и той же величины каждый раз получают несколько отличающиеся результаты, как по абсолютной величине, так и по знакам, каким бы опытом не обладал исполнитель и какими бы высокоточными приборами он не пользовался.
Погрешности различают: грубые, систематические и случайные.
Появление грубых погрешностей (промахов) связано с серьезными ошибками при производстве измерительных работ. Эти ошибки легко выявляются и устраняются в результате контроля измерений.
Систематические погрешностивходят в каждый результат измерений по строго определенному закону. Они обусловлены влиянием конструкции измерительных приборов, погрешностями градуировки их шкал, износом и т. д. (инструментальные погрешности)иливозникают из-за недоучета условий измерений и закономерностей их изменений, приближенности некоторых формул и др. (методические погрешности). Систематические погрешности делятся на постоянные (неизменные по знаку и вели чине) и переменные (изменяющие свою величину от одного измерения к другому по определенному закону).
Такие погрешности заранее определимы и могут быть сведены к необходимому минимуму путем введения соответствующих поправок.
Например, заранее может быть учтено влияние кривизны Земли на точность определения вертикальных расстояний, влияние температуры воздуха и атмосферного давления при определении длин линий светодальномерами или электронными тахеометрами, заранее можно учесть влияние рефракции атмосферы и т. д.
Если не допускать грубых погрешностей и устранять систематические, то качество измерений будет определяться только случайными погрешностями. Эти погрешности неустранимы, однако их поведение подчиняется законам больших чисел. Их можно анализировать, контролировать и сводить к необходимому минимуму.
Для уменьшения влияния случайных погрешностей на результаты измерений прибегают к многократным измерениям, к улучшению условий работы, выбирают более совершенные приборы, методы измерений и осуществляют тщательное их производство.
Сопоставляя ряды случайных погрешностей равноточных измерений можно обнаружить, что они обладают следующими свойствами:
а) для данного вида и условий измерений случайные погрешности не могут превышать по абсолютной величине некоторого предела;
б) малые по абсолютной величине погрешности появляются чаще больших;
в) положительные погрешности появляются так же часто, как и равные им по абсолютной величине отрицательные;
г) среднее арифметическое из случайных погрешностей одной и той же величины стремится к нулю при неограниченном увеличении числа измерений.
Распределение ошибок, соответствующее указанным свойствам, называется нормальным (рис. 12.1).

Читайте также:  О государственной гражданской службе республики крым


Рис. 12.1. Кривая нормального распределения случайных погрешностей Гаусса

Разность между результатом измерения некоторой величины (l) и ее истинным значением (X) называют абсолютной (истинной) погрешностью.

Истинное (абсолютно точное) значение измеряемой величины получить невозможно, даже используя приборы самой высокой точности и самую совершенную методику измерений. Лишь в отдельных случаях может быть известно теоретическое значение величины. Накопление погрешностей приводит к образованию расхождений между результатами измерений и действительными их значениями.
Разность суммы практически измеренных (или вычисленных) величин и теоретического ее значения называется невязкой. Например, теоретическая сумма углов в плоском треугольнике равна 180º, а сумма измеренных углов оказалась равной 180º02′; тогда погрешность суммы измеренных углов составит +0º02′. Эта погрешность будет угловой невязкой треугольника.
Абсолютная погрешность не является, полным показателем точности выполненных работ. Например, если некоторая линия, фактическая длина которой составляет 1000 м, измерена землемерной лентой с ошибкой 0,5 м, а отрезок длиною 200 м – с ошибкой 0,2 м, то, несмотря на то, что абсолютная погрешность первого измерения больше второго, все же первое измерение было выполнено с точностью в два раза более высокой. Поэтому вводят понятие относительной погрешности:

Отношение абсолютной погрешности измеряемой величины Δ к измеренной величине l называют относительной погрешностью.

Относительные погрешности всегда выражаются дробью с числителем, равным единице (аликвотная дробь). Так, в приведенном выше примере относительная погрешность первого измерения составляет

,

.

12.3 МАТЕМАТИЧЕСКАЯ ОБРАБОТКА РЕЗУЛЬТАТОВ РАВНОТОЧНЫХ ИЗМЕРЕНИЙ ОДНОЙ ВЕЛИЧИНЫ

Пусть некоторая величина с истинным значением X измерена равноточно n раз и получены результаты: l 1, l 2, l 3, l i (i = 1, 2, 3, … n), которые часто называют рядом измерений. Требуется найти наиболее надежное значение измеренной величины, которое называют вероятнейшим, и оценить точность результата.
В теории погрешностей наиболее вероятным значением для ряда равноточных результатов измерений принимают среднее арифметическое, т. е.

(12.1)

При отсутствии систематических погрешностей арифметическое среднее по мере неограниченного возрастания числа измерений стремится к истинному значению измеряемой величины.
Чтобы усилить влияние более крупных погрешностей на результат оценки точности ряда измерений, пользуются среднеквадратической погрешностью (СКП). Если известно истинное значение измеряемой величины, а систематическая погрешность пренебрежимо мала, то средняя квадратическая погрешность (m) отдельного результата равноточных измерений определяется по формуле Гаусса:

m = (12.2) ,

В геодезической практике истинное значение измеряемой величины в большинстве случаев заранее неизвестно. Тогда среднюю квадратическую погрешность отдельного результата измерений вычисляют по вероятнейшим погрешностям (δ) отдельных результатов измерений (l i); по формуле Бесселя:

m = (12.3)

Где вероятнейшие погрешности (δ i) определяются как отклонение результатов измерений от арифметического среднего

Часто рядом с вероятнейшим значением величины записывают и ее среднюю квадратическую погрешность (m), например 70°05′ ± 1′. Это означает, что точное значение угла может быть больше или меньше указанного на 1′. Однако эту минуту нельзя ни добавить к углу, ни вычесть из него. Она характеризует лишь точность получения результатов при данных условиях измерений.

Анализ кривой нормального распределения Гаусса показывает, что при достаточно большом числе измерений одной и той же величины случайная погрешность измерения может быть:

  • больше средней квадратической m в 32 случаях из 100;
  • больше удвоенной средней квадратической 2m в 5 случаях из 100;
  • больше утроенной средней квадратической 3m в 3 случаях из 1000.

Маловероятно, чтобы случайная погрешность измерения оказалась больше утроенной средней квадратической, поэтому утроенную среднюю квадратическую погрешность считают предельной:

Δ пред. = 3m

Предельной погрешностью называется такое значение случайной погрешности, появление которого при данных условиях измерений маловероятно.

В качестве предельной также принимают среднюю квадратическую погрешность, равную

с вероятностью ошибки, равной порядка 1%.

Средняя квадратическая погрешность суммы измеренных величин

Квадрат средней квадратической погрешности алгебраической суммы аргумента равен сумме квадратов средних квадратических погрешностей слагаемых

В частном случае, когда m 1 = m 2 = m 3 = m n = m для определения средней квадратической погрешности арифметической средней пользуются формулой

m S =

Средняя квадратическая погрешность алгебраической суммы равноточных измерений в раз больше средней квадратической погрешности одного слагаемого.

Пример.
Если измерено 9 углов 30-секундным теодолитом, то средняя квадратическая погрешность угловых измерений составит

m угл = 30" = ±1,5"

Средняя квадратическая погрешность арифметического среднего
(точность определения среднего арифметического)

Средняя квадратическая погрешность арифметического среднего(mµ) в раз меньше среднего квадратического одного измерения.
Это свойство средней квадратической погрешности арифметического среднего позволяет повысить точность измерений путем увеличения числа измерений.

Например, требуется определить величину угла с точностью ± 15 секунд при наличии 30-секундного теодолита.

Если измерить угол 4 раза (n) и определить арифметическое среднее, то средняя квадратическая погрешность арифметического среднего (mµ ) составит ± 15 секунд.

Читайте также:  Операция приостановлена во избежание мошенничества сбербанк

Средняя квадратическая погрешность арифметического среднего (mµ) показывает, в какой мере снижается влияние случайных погрешностей при многократных измерениях.

Пример
Произведено 5-кратное измерение длины одной линии.
По результатам измерений вычислить: вероятнейшее значение ее длины L (среднее арифметическое); вероятнейшие погрешности (отклонения от среднего арифметического); среднюю квадратическую погрешность одного измерения m; точность определения среднего арифметического , и вероятнейшее значение длины линии с учетом среднеквадратической погрешности среднего арифметического (L).

Обработка результатов измерения расстояния (пример)

Результат измерения,
м

Квадрат вероятнейшей погрешности, см 2

Человеку свойственно ошибаться. Это касается не только общих вопросов и знаний жизни. Но и распространяется на любые сферы его деятельности, в том числе в области геодезии. В ней все проводимые измерения выполняются с ошибками. Значительная часть работ в геодезическом производстве основывается на измерениях. А измерения — своего рода сравнение с какой-то эталонной или истинной величиной. Если понимать, что истинного значения в идеале не существует, то все сравнения в измерениях сводятся к сравнению с конкретно полученным значением и принятому, как верное. Одним из наиболее приближенных к истинному значению, считается среднее арифметическое.

Понятие погрешности, её абсолютная и относительная величины

Если переходить на понятие погрешности, то отклонение отдельного замера от среднего арифметического из выполненных измерений и считается абсолютной его ошибкой. Числовая форма погрешности не дает представления о качестве произведенного измерения. Для этого существует понятие относительной погрешности. Под ним понимают отношение значения собственно ошибки к замеренной величине. Применяется этот параметр в определении точности работ при линейных замерах в полигонометрических и теодолитных ходах.

В нивелирных ходах для его оценки точности существует так называемая приведенная погрешность. Это тоже своего рода относительный показатель. Только он подразумевает под собой отношение абсолютного значения ошибки к конкретному принятому значению определяемой величины (для нивелировок на 1 км хода).

Погрешности по источникам возникновения

При производстве геодезических работ после окончания каждой выполненной операции в полевых условиях можно говорить об ошибках. Присутствуют они и при проведении камеральных работ. Так при установке приборов в рабочее положение возникают отклонения в центрировании инструмента над центром знака. Также возникают неточности при выставлении прибора в отвесное состояние, когда выводим его цилиндрический уровень в верхнее горизонтальное положение и круглый уровень на середину. Следующими причинами возникновения погрешностей считаются визирование и снятие отсчетов в момент исполнения наблюдений. Влияние внешних условий окружающей среды: рефракция воздуха, дымка, туман, осадки, формирует еще одну группу ошибок. Помимо человеческого фактора и влияния внешней среды существуют конструктивные особенности приборов, с заложенными в них вероятностными составляющими точности измерений. Еще одной из причин возникновения погрешностей считается несовершенство методик их определений. Резюмируя выше сказанное, можно выделить следующий перечень ошибок по источникам их возникновения:

  • инструментальные;
  • индивидуальные;
  • из-за условий окружающей среды;
  • методические.

Погрешности по характеру действий

По данному признаку все ошибки можно разделить на следующие отклонения:

  • грубые, то есть значительно превышающие ожидаемые ошибки, возникающие в результате просчетов, неверных действий и обнаруженные при дополнительном контроле;
  • систематические отклонения, отличающиеся постоянством возникновения и закономерностями изменений при повторных операциях; к ним можно отнести периодические и функциональные погрешности;
  • случайные, значения величин, которых не значительны, большая часть их мала, чем велика, встречаются как с положительными, так и с отрицательными значениями, в каждом конкретном случае они возникают отдельно случайным образом и в своей массе подчинены определенным вероятностным закономерностям;

Именно изучение случайных погрешностей в геодезии дает возможность производить оценки точности и получать наиболее надежные результаты.

Предельные и допустимые отклонения

При определенных факторах случайные ошибки по абсолютному значению своей величины не могут превышать определенного предела. Этот предел в геодезической и маркшейдерской практике имеет название предельной погрешности.

В строительном производстве нормативными документами введен термин предельного отклонения, который может иметь как положительное, так и отрицательное значения. Алгебраическая сумма этих параметров (предельных отклонений) имеет название допуска.

В геодезии крайние предельные значения отклонений, допускаемые нормативной документацией, называются допустимыми.

Средние, вероятные и средне квадратические погрешности

При различных оценках точности выполненных замеров применяются некоторые критерии случайных ошибок. К таким мерилам оценки относятся понятия:

  • средне арифметического отклонения от всех случайных ошибок, имеющее название среднего уклонения;
  • срединного отклонения, то есть находящегося в середине измеренного ряда по абсолютным значениям с учетом убывания и возрастания, именуемое вероятной ошибкой;
  • средне квадратическое отклонение (СКО) – это параметр функции дисперсии (рассеивания) случайных величин результатов измерений. Он равен математическому ожиданию (среднему арифметическому значению) квадратов отклонений в измерениях от математического ожидания (среднего арифметического значения) результатов замеров.

Случайные погрешности подчиняются нормальному закону распределения и находятся в интервале от нуля до трех СКО. Большинство из них в пределах шестидесяти восьми процентов находятся в интервале до одного СКО. Девяносто пять процентов случайных величин попадает в интервал от нуля до двух СКО. Девяносто девять процентов случайных ошибок находится в интервале от нуля до трех СКО.

На основании этого в теоретических расчетах при предварительных оценках точности выполнения работ за предельные принимаются три средне квадратические ошибки. При геодезических и маркшейдерских работах на практике к расчетам принимаются двойные величины средне квадратических отклонений.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock detector